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Image registration is an old topic but has a new application in deep-sky imaging fields named live stacking. In this
Letter, we propose a live stacking algorithm based on star detection, description, and matching. A thresholding
method based on Otsu and centralization is proposed to implement star detection. Then, a translation and
rotation invariant descriptor is proposed to provide accurate feature matching. Extensive experiments illustrate
that our proposed method is feasible in deep-sky image live stacking.
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Consumer astronomy photography involves deep-sky and
planetary imaging. For deep-sky imaging, long exposure
times are necessary because of the dim light from the
scene. However, the increased exposure time will bring
more hot noise and distortion. The alternative plan to this
situation is image stacking, an old topic but one that has a
novel application in deep-sky imaging fields. There are
two methods of live stacking: average and additive stack-
ing. For average stacking, the goal is to improve the
signal-to-noise ratio, while additive stacking is designed
to achieve a preview result that used to be from long ex-
posures but can instead be achieved with a relatively short
exposure time. There is already some offline deep-sky
stacking software, such as DeepskyStacker[1], Registax[2],
and PixInsight[3]. Since they are all offline-use software
products, the user cannot preview the stacked result while
photographing. Recently, SharpCap[4] provided a new
function named live stacking, which stacks multiple
frames and allows users to preview the result immediately.
However, it is still a highly parameter-related application.
No matter which method of stacking is implemented in the
above-mentioned software, accurate registration between
images is always a prerequisite of stacking.
Image registration is the process of overlaying two or

more images of the same scene taken at different times[5].
It is required in many fields, including remote sensing,
laser radar and aerial optical imagery[6,7], multi-focus,
microscopic, and fluoroscopic image registration[8–11], opti-
cal stabilization[12], and other 2D and 3D applications[13–16].
Image registration in deep-sky image live stacking mainly
handles translation and rotation deformations caused by
the vibrations of imaging devices and the Earth’s rotation.
As a kind of image registration method, feature-based

image registration is the current research hotspot; we
refer the reader some articles for an overview of this
method[5,17,18]. A standard feature-based image registration
method consists of feature detection, feature description,
feature matching, transformation estimation, and image
resampling. Among these parts, feature detection, feature

description, and feature matching are the critical parts
whose accuracy will affect the final registration result.
Compared with edges, corners, endpoints, intersections,
and other features, stars serve as relatively ideal features
for deep-sky images.

The most commonly used star detection method is the
thresholding method, where every pixel that fulfills a cer-
tain intensity, area, or distance criterion will be considered
as star pixel. A few thresholding-related star detection
algorithms have been developed in the past few years.
Cristo et al.[19] proposed a novel thresholding method
for detecting stars automatically. That method intro-
duced a set of image pre-processing and post-processing
models, so it is not simple enough to be applied in live
situations. Wang et al.[20] proposed a fast onboard star ex-
traction algorithm, which is more like a bright star extrac-
tion algorithm and cannot be applied in our dim deep-sky
image stacking applications. Arbabmir et al.[21] proposed a
thresholding method that performs image binalization
properly even for images with uneven illumination.
Regardless of its iterative nature, its performance still de-
pends on the size of the local window, which additionally
depends on the optics design of the camera, and that limits
its popularity. Xu et al.[22] described a new weighted
threshold algorithm based on the estimation of the opti-
mal threshold for achieving minimal centroid error. As an
iterative method, the computation efficiency is difficult to
guarantee without the proper initial threshold. However,
consumer software, such as Registax, SharpCap, and
PixInsight, still requires user to input the threshold
manually. Although PixInsight implemented a wavelet-
based automatic star detection algorithm, its detection
criteria are still controlled through process parameters.
Nowadays, these methods suffer either a computation
or parameter-dependent problem. In this Letter, an auto-
matic and efficient thresholding technique based on Otsu
and centralization is proposed. It could process deep-sky
images even with existing illumination differences. In the
proposed method, the threshold firstly is calculated by
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Otsu and then centralized to make it feasible for uneven
intensities.
In order to match features between different images, a

feature descriptor is necessary. In computer vision fields,
several feature descriptors, such as SIFT, SURF, KAZE,
etc., have been proposed for complicated computer vision
applications. The rotation invariant property of these de-
scriptors either comes from the local statistics of gradients
or Haar wavelet responses. However, for star features used
in deep-sky images, this rotation invariant nature may fail
due to the star’s special shape, where the intensity de-
creases similarly in all directions. In order to handle this
problem and make the star feature rotation invariant, we
creatively proposed a translation and rotation invariant
descriptor. This descriptor relies on the star’s character-
istics and relationship with its nearby stars. The best can-
didate star from the deformed image for each star from the
reference image can be efficiently obtained by calculating
the Euclidean distance.
Figure 1 shows the flow diagram of our proposed algo-

rithm. Besides the pre-processing and post-processing
steps, our approach involves three core components: star
detection, star description, and star matching. Since our
algorithm is designed to perform live stacking, after
pre-processing, such as subtracting the dark, bias, and
flat-field frames, each frame will be sent to the stack
thread, which works with the grab thread asynchronously.
Then the stack thread will register the input frame to the
reference frame one by one, and the final stacked result
will be used as the new reference frame.
First, stars should be extracted as accurately as possible

and in large amounts. Otherwise, the following steps will
produce errors and even cause registration failure. In this
Letter, we proposed a thresholding method based on Otsu
and centralization. The famous Otsu[23] method thresholds
a given image by maximizing the inter-class variance.
Given an image with L gray levels and N total pixels,
the inter-class variance for the chosen threshold t can
be calculated by

σðtÞ ¼ wAðμ− μAÞ2 þ wBðμ− μBÞ2: (1)

The means μ, μA, and μB are defined as

μ¼
XL

i¼1

Pi � i; μA¼
Pt

i¼1 i·Pi

wA
; μB ¼

PL
i¼t i·Pi

wB
; (2)

and the probabilities Pi , wA, and wB are defined as

Pi ¼
Ni

N
; wA ¼

Xt

i¼1

Pi ; wB ¼
XL

i¼t

Pi : (3)

The main drawback of Otsu is that it may fail for deep-
sky images with uneven illuminations; this commonly
takes place when the imaging device is exposed to unde-
sirable light sources. This is a common problem that all
global thresholding methods face. We modify the Otsu
threshold by introducing centralization, and that makes
it applicable to uneven background intensities and noise.
This improvement can be achieved by

Tc ¼ Mf − tmean þ totsu; (4)

whereMf represents the mean filtered image matrix, tmean
denotes the mean value of the filtered image, and totsu is
the global threshold Otsu method identified. Tc is the cen-
tralized pixel-related threshold matrix, which includes
thresholds for every pixel in a given image. Then, the
binary image can be easily achieved by applying the
threshold matrix to the input frame. Figure 2 shows a
thresholding example using M42 image. As shown in
Fig. 2, compared with Otsu, our result achieves higher
detection accuracy, even for these nebula regions.

For stars, the feature is more like a speckle instead of a
point. Therefore, we need to extract the stars’ region
before proceeding further. In order to extract the region
of stars, we apply the Moore-Neighbor tracing algorithm
modified by Jacob’s stopping criteria.

The state-of-the-art algorithms used in deep-sky image
stacking only use a star’s position and brightness to de-
scribe it. This is not sufficient to achieve a rotation invari-
ant nature. In order to keep the registration rotation
invariant, they use the triangle similarity to cope with this
rotation problem during star matching. So state-of-the-art
algorithms are not only heavily reliant on memory to save
the formed triangles, but they also have a very expensive
computational cost. So, we creatively proposed a descrip-
tor which not only includes a star’s characteristics, such as
position and brightness, but also takes the spatial relation-
ship with their nearby stars into consideration. This idea
of using the geometrical relationship has been proven
effective by Shi et al.[24], who proposed a topology-based
affine invariant descriptor. Topology is constructed
among regions, and the number of relative neighboring re-
gions is not fixed. Therefore, its computational cost may
increase while processing deep-sky images because that
star may have a large number of relative neighboring
pairs. Thus, we need to propose a new descriptor used
to process deep-sky images. Because of the artifacts of
the imaging system and the effects of atmospheric turbu-
lence, the shape of the star mostly looks like anFig. 1. Flow diagram of our proposed algorithm.
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ellipse instead of an ideal circle. In our implementation,
since we have extracted the counters of stars, we can sim-
plify the procedure to fit the best ellipse for the counters
using the direct ellipse fit method[25]. The ellipse’s semi-
major axis a, semi-minor axis b, center coordinates
ðxc; ycÞ, and rotation angle θ can be easily obtained using
the coefficients of a standard ellipse function.
Then, we introduce two orientations to each star to

make it rotation invariant. As shown in Fig. 3, for the cur-
rent starA,B andC are the two nearest neighboring stars.
Connecting A and the two neighboring stars forms two
line segments AB and AC , whose lengths are L1 and
L2, respectively. We mark the angles’ line segments AB
andAC to the major axis direction x 0 as θ1 and θ2. Finally,
we add L1, θ1, L2, and θ2 to current star’s descriptor. Now,
our descriptor is formed as

fxc; yc; a; b; θ;L1; θ1;L2; θ2g: (5)

Figure 4 shows our description results for two deep-sky
images with minor rotation. The white quiver denotes the
orientation, and its length is the distance between two
stars. Taking the dominant orientation into consideration,
the relationships between the stars are kept perfectly
between the two images. Compared with SIFT and SURF,
our descriptor is only an 8-vector descriptor, so it is effi-
cient to compute and match by the simplest Euclidean dis-
tance. The proposed descriptor also makes our algorithm
perform much more efficiently than methods based on tri-
angle similarity.
In the final step of star matching, we applied the ran-

dom sample consensus (RANSAC)[26] to reject mismatches

and calculate the transformation matrix to be used for the
post-processing procedures.

As mentioned earlier, the mainstream SIFT and SURF
cannot be directly applied in our technique, because the
dominant orientation obtained by these algorithms is
not robust enough to keep the descriptor rotation invari-
ant. This is mainly due to two reasons: the region size used
for assigning the dominant orientation and the region size
used for the describing the feature. For star features,

Fig. 2. Comparison of thresholding results: (a) Original M42 image. (b) Otsu result. (c) Our result.

Fig. 3. Schematic diagram of the rotation invariant descriptor.

Fig. 4. Description results using our proposed star descriptor.

Fig. 5. Matching results using SIFT, SURF, and our descriptor.
(a) Star detection results. (b) SIFT result. (c) SURF result.
(d) Our result.
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different region sizes will result in different matching re-
sults. Ruiz-del-Solar et al.[27] applied the SIFT descriptor to
stellar image matching and introduced an additional veri-
fication procedure to discard false detections.With the help
of the additional verification procedure, it achieved accept-
able results. In other words, regardless of the additional
procedure, the defect of the SIFT descriptor still exists.
In order to illustrate the superiority of our descriptor, we

compare it with SIFT and SURF using two real deep-sky
images captured by a Canon EOS 1100D with a 50 mm
lens. For a fair comparison, the features used by the three
descriptors are the star centroid points detected by our star
detection algorithm. Figure 5 shows the results. The region
size for SIFT and SURF is the maximum star contour’s
size. As shown in Fig. 5, because of the rotation invariant
descriptor’s inaccuracy, both SIFT and SURF generate
many mismatches, while our descriptor achieves a suffi-
cient number of correctly matched pairs.
In order to further illustrate the uncertainty that differ-

ent region sizes bring into feature matching, we plot the
percentage of correct matches with different region sizes in
Fig. 6. The horizontal axis denotes the region size, while
the vertical axis denotes the percentage of correct
matches. As shown in Fig. 6, both the SIFT and SURF
descriptors vary dramatically with the increase of the
region size. Among the three descriptors, our descriptor
obtains the best matching result. Although, compared

with SIFT, SURF finally achieves a relatively good and
stable result that nearly reaches our result, it still needs
expert experience to achieve better results.

Evaluating the registration quality and accuracy is a
necessary part of image registration because, without
quantitative evaluation, no registration method can be
accepted for practical use[5]. Therefore, we do an evalu-
ation on ten randomly rotated (1°–90°) and translated
(1–10 pixels) images by root-mean-squared error (RMSE)
and joint entropy[28] against SIFT and SURF. The results
are shown in Table 1. For both measures, the smaller the
calculated value is, the better the registration will be. This
quantitative evaluation also could facilitate the following
analysis of the influence of the registration accuracy on
image live stacking. As shown in Table 1, our descriptor
obtains a smaller RMSE and joint entropy than SIFT and
SURF overall. This result represents that our descriptor
has a higher registration accuracy. For offline registration
or the situation where there is a small amount of images to
be registered, SIFT and SURF could achieve acceptable
results. However, in deep-sky image live stacking, every
intermediate averaged or stacked image will be assigned
as the new reference frame used for the next registration.
The error produced by the inaccurate registration will be
accumulated after averaging or stacking images continu-
ously and finally leads to the registration failure. So, a
higher registration accuracy is required.

In our final experiment, where the preview resolution is
1920 × 1200, the computation cost for one frame is kept
below 0.5 s, and this is acceptable in deep-sky live stack-
ing. Although the efficiency already is high enough to
ensure a live process, we still introduce a buffering mecha-
nism in the implementation to avoid the problem that the
calculation cannot keep up with the frame rate under a
very low exposure. Every grabbed frame will be saved
in the buffering pool while the stack thread picks frames
from the buffering pool one by one. These two threads
work with each other asynchronously. If the frame rate
is high and the calculation of the image registration can-
not catch up with it, the old frames saved in the buffering
pool will be dropped and the newly arrived frames will be
added in. This implementation always guarantees the
latest frame will be stacked into the preview result.

Fig. 6. Matching ratio results among SIFT, SURF, and our
descriptor.

Table 1. Quantitative Registration Evaluation Against SIFT and SURF

RMSE

SIFT 0.8880 0.4051 0.0161 0.1150 0.7101 0.8650 0.4309 0.9072 0.4314 0.9771

SURF 0.1475 0.2306 0.0152 0.0704 0.4595 0.7986 0.0199 0.5854 0.3452 0.7318

OUR 0.0106 0.0180 0.0143 0.0455 0.0224 0.0281 0.0127 0.0380 0.0307 0.0230

Joint Entropy

SIFT 9.3339 9.3715 8.3369 9.3600 9.4503 9.3734 7.0749 9.3636 9.3717 9.8534

SURF 9.3354 9.3711 7.3365 9.3588 9.3185 9.3651 6.2628 9.3414 9.3663 7.2840

OUR 6.0073 6.2474 6.6522 8.0960 6.8046 7.0414 6.1535 7.0749 7.4858 6.8305
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Figure 7 shows the live stacking results of M51. These
M51 images are capturedwith a 15-s exposure and a 10 gain
camera setting. Figure 7(a) is the original frame without
stacking anymore images. Due to the dim light, the original
frame shows nothing except several bright points.With the
increase of the stacked image number, the details of M51
emerge gradually without any affecting the translation
and rotation. The black edges in Fig. 7(d) illustrate that
translation and rotation between frames do exist. This is
caused by setting pixels that does not exist in the current
frame compared with the reference frame to zero.
Figure 8 shows two ten-frames-stacked M92 images

where every frame is captured using 5 s of exposure and
a 10 gain camera setting with or without alignment en-
abled. Both ten-frames-stacked results in Fig. 8 make more
stars emerge and achieve a long-exposure effect. However,
in Fig. 8(b), there are clear star trails introduced by the
equatorial mount’s inaccurate compensation for the
Earth’s rotation, while the stars’ shapes are still sharp in
Fig. 8(a). That means even when using a short exposure
time, image registration is still needed, andour live stacking
method accurately registers every input frame and success-
fully eliminates these inaccurate compensations.

In conclusion, we propose a live stacking algorithm
based on star detection, description and matching. Our
star detection overcomes the problem that the traditional
global threshold-based method using centralization. The
major contribution of our work is the proposed descriptor,
which makes for up the defect of traditional descriptors,
which cannot provide image registration in deep-sky im-
aging. As a new descriptor, our star descriptor has fewer
memory requirements and is better for deep-sky image live
stacking. The experiments indicate that our proposed live
stacking algorithm achieves a long-exposure effect with
translation and rotation invariant features.
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Fig. 7. Live stacking results while photographing M51. (a) No
stack. (b) Three frames stacked. (c) Six frames stacked. (d) Nine
frames stacked.

Fig. 8. Comparison results using ten-frames-stackedM92 images
and their zoomed views. (a) Result with alignment enabled.
(b) Result with alignment disabled.
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